

CCNP BSCI Notes - EIGRP Principles

Supports routed protocols like IP and IPv6 via protocol-dependent modules Uses Reliable Transport Protocol (RTP, Cisco proprietary) for some traffic (updates, queries, and replies) Uses hellos to identify/monitor neighbors Uses the Diffusing Update Algorithm (DUAL) to select routes EIGRP is IP protocol 88. EIGRP supports proportional unequal-cost load-balancing among feasible routes. Packet types **Hello** - Identify neighbors, sent as periodic multicasts **Update** - Advertises routes, only sent when there is a change, multicast to 224.0.0.10 **Ack** - Acknowledges receipt of an update **Query** - Used to query routes from neighbors (multicast; unicast attempted up to 16 times if multicast gets no response)

Reply - Used to answer a query (unicast) Metric calculation Metric = $256 * (K1 * \text{bandwidth} + ((K2 * \text{bandwidth}) / (256 - \text{load})) + K3 * \text{delay}) * (K5 / (\text{reliability} + K4))$ K values are used to distribute weight to different path aspects: **bandwidth** - Defined as 107 divided by the speed of the slowest link in the path, in Kbps

load - 8-bit value, not considered by default

reliability - 8-bit value, not considered by default

delay - constant value associated with interface type; EIGRP uses the sum of all delays in the path **K defaults**: K1 = 1, K2 = 0, K3 = 1, K4 = 0, K5 = 0 K values can be manipulated by an admin, but routers must have matching K values to become neighbors **DUAL**

Advertised distance - Cost advertised by a neighbor to get to a destination **Feasible distance** - Advertised distance + cost get to that neighbor The feasibility requirement states "if my neighbor's advertised distance is less than my feasible distance, the path will be loop free."

Successor - The neighbor with the best path

Feasible successor - All other neighbors which meet the feasibility

requirement **Split-horizon** - A network is not advertised on the link from which is learned. Queries When a router loses its successor and has no feasible successors, it will query all remaining neighbors for a new route. Queries are recursive and will be forwarded to other neighbors until either a route is found, or a summarization boundary is reached. Stuck in Active (SIA) - Queries which do not return a route before the active timer expires (usually 3 minutes), the router is considered stuck in active mode. EIGRP Tables **Neighbor table** Stores information about neighboring EIGRP routers:

Network address (IP)

Connected interface

Holdtime - how long the router will wait to receive another HELLO before dropping the neighbor; default = $3 * \text{hello timer}$ **Uptime** - how long the neighborship has been established **Sequence numbers**

Retransmission Timeout (RTO) - how long the router will wait for an ack before retransmitting the packet; calculated by SRTT **Smooth Round Trip Time (SRTT)** - time it takes for an ack to be received once a packet has been transmitted

Queue count - number of packets waiting in queue; a high count indicates line congestion **Topology table** Holds all routes received from neighbors, is built from updates, calculated by DUAL, and contains all the information required by the routing table **Routing table** **Route types**:

Internal - Paths directly within EIGRP

Summary - Internal paths which have been summarized

External - Routes redistributes into EIGRP